

CHEMISTRY STANDARD LEVEL PAPER 1

Monday 18 November 2013 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [30 marks].

0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)			
٢		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103 Lr (260)
9		8 0 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 N o (259)
Ś		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
ç		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37		67 Ho 164.93	99 Es (254)
				30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	98 Cf (251)
ole				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97 Bk (247)
The Periodic Table				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
Perio				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
The				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
	F		I	25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 N p (237)
	number	Element ve atomic mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic number	Element Relative atomic mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
	<u>}</u>		ł	22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)	÷	**
7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
1	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		

- 1. What is the total number of oxygen atoms in 0.200 mol of glucose, $C_6H_{12}O_6$?
 - A. 1.20
 - B. 6.00
 - C. 1.20×10^{23}
 - D. 7.22×10^{23}
- 2. Which represents an empirical formula?
 - $A. \quad C_2H_4$
 - B. B_2H_6
 - $C. \quad Al_2O_3$
 - D. C₆H₆
- 3. What are the coefficients of $H_2SO_4(aq)$ and $H_3PO_4(aq)$ when the following equation is balanced using the smallest possible whole numbers?

$$\underline{\qquad} Ca_3(PO_4)_2(s) + \underline{\qquad} H_2SO_4(aq) \rightarrow \underline{\qquad} CaSO_4(s) + \underline{\qquad} H_3PO_4(aq)$$

	Coefficient of H ₂ SO ₄ (aq)	Coefficient of H ₃ PO ₄ (aq)
A.	1	2
B.	2	3
C.	3	1
D.	3	2

- 4. What is the pressure, in Pa, if 3 mol of gas occupies 500 cm^3 at $25 \degree \text{C}$?
 - Given: $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ $10^{-3} \text{ m}^3 = 10^3 \text{ cm}^3$ A. $\frac{3 \times 8.31 \times 298}{500}$ B. $\frac{3 \times 8.31 \times 25}{0.0005}$ C. $\frac{3 \times 8.31 \times 25}{500}$
 - D. $\frac{3 \times 8.31 \times 298}{0.0005}$
- 5. 7.102 g of $Na_2SO_4(M = 142.04 \text{ g mol}^{-1})$ is dissolved in water to prepare 0.5000 dm³ of solution. What is the concentration of Na_2SO_4 in mol dm⁻³?
 - A. 2.500×10^{-2}
 - B. 1.000×10^{-1}
 - C. 1.000×10
 - D. 1.000×10^2
- 6. What are the numbers of neutrons and electrons in the iodine ion, $^{125}I^+?$

	Neutrons	Electrons
A.	53	53
B.	72	52
C.	72	53
D.	125	52

- 7. In the emission spectrum of the hydrogen atom, which electronic transition would produce a line in the ultraviolet region of the electromagnetic spectrum?
 - A. $n = 1 \rightarrow n = 3$
 - B. $n = 3 \rightarrow n = 1$
 - C. $n = 3 \rightarrow n = 2$
 - D. $n = 10 \rightarrow n = 2$
- 8. Which statements are correct for magnesium?
 - I. The electron arrangement of the atom is 2,8,2.
 - II. The atom has two electrons in its outermost (valence) energy level.
 - III. Its oxide is basic.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 9. Which series is arranged in order of **increasing** radius?
 - A. $F < Cl^- < Cl$
 - B. Rb < K < Na
 - C. $Al^{3+} < Mg^{2+} < Na^{+}$
 - $D. \qquad I^- < Br^- < Cl^-$

- **10.** What is the formula of calcium nitride?
 - A. Ca_3N_2
 - B. Ca_2N_3
 - C. $Ca(NO_2)_2$
 - D. $Ca(NO_3)_2$
- 11. Which compounds have an ionic lattice structure in the solid state?
 - I. Silicon dioxide
 - II. Sodium fluoride
 - III. Ammonium nitrate
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

The Lewis (electron dot) structure of aspirin is represented below.

What are the approximate values of the bond angles α , β and γ , in the molecule?

	α	β	γ
A.	90°	104.5°	104.5°
B.	90°	120°	120°
C.	109.5°	120°	120°
D.	109.5°	104.5°	120°

13. Which intermolecular forces exist between the following molecules?

	H ₂ Se	СО	H ₂
A.	van der Waals' and dipole-dipole	van der Waals' and dipole-dipole	van der Waals' only
B.	van der Waals', dipole-dipole and hydrogen bonding	van der Waals' only	van der Waals' and hydrogen bonding
C.	van der Waals', dipole-dipole and hydrogen bonding	van der Waals' and dipole-dipole	van der Waals' only
D.	van der Waals' and dipole-dipole	van der Waals' and dipole-dipole	van der Waals' and hydrogen bonding

12.

- 14. Which compound has the highest boiling point?
 - A. CH₃CH₃
 - B. CH₃OH
 - C. CH₃CH₂OH
 - D. CH₃CH₂CH₃
- **15.** Which processes are exothermic?
 - I. $CH_3CH_2CH_3(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$
 - II. $Cl_2(g) \rightarrow 2Cl(g)$
 - III. $CH_3CH_2COOH(aq) + NaOH(aq) \rightarrow CH_3CH_2COONa(aq) + H_2O(l)$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **16.** Consider the following two equations.

$$2Ca(s) + O_2(g) \rightarrow 2CaO(s) \qquad \Delta H^{\ominus} = +x \text{ kJ}$$

$$Ca(s) + 0.5O_2(g) + CO_2(g) \rightarrow CaCO_3(s) \qquad \Delta H^{\ominus} = +y \text{ kJ}$$

What is ΔH^{Θ} , in kJ, for the following reaction?

$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$$

- A. y 0.5x
- B. y-x
- C. 0.5 y
- D. x y

- 17. Which factors can increase the rate of a chemical reaction?
 - I. Increasing the pressure in gaseous reactions
 - II. Increasing the temperature in gaseous reactions
 - III. Increasing the particle size of a solid in a reaction
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 18. The diagram below shows the energy changes for a reaction with and without a catalyst. Which symbols represent the activation energy, E_a , and the enthalpy change, ΔH , for the reaction with a catalyst?

	E_{a} (with a catalyst)	ΔH
A.	x	Ζ
B.	У	Ζ
C.	Z	x
D.	<i>y</i> – <i>x</i>	Z

19. What is the equilibrium constant expression, K_c , for the following reaction?

 $2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$

A. $K_{c} = \frac{[H_2S]^2}{[H_2]^2[S_2]}$

B.
$$K_{c} = \frac{[H_{2}][S_{2}]}{[H_{2}S]}$$

C.
$$K_{\rm c} = \frac{2[{\rm H}_2] + [{\rm S}_2]}{2[{\rm H}_2{\rm S}]}$$

D.
$$K_{\rm c} = \frac{[{\rm H}_2]^2 [{\rm S}_2]}{[{\rm H}_2 {\rm S}]^2}$$

20. What happens to the position of equilibrium and the value of K_c in the following reaction when the temperature is decreased?

$$N_2O_4(g) \rightleftharpoons 2NO_2(g) \qquad \Delta H^{\ominus} = +57.2 \, kJ$$

	Position of equilibrium	Value of K _c
A.	shifts towards reactants	decreases
B.	shifts towards reactants	increases
C.	shifts towards products	decreases
D.	shifts towards products	increases

21. What are the conjugate acid–base pairs in the following reaction?

	Brønsted–Lowry acid	Brønsted–Lowry base	Conjugate acid	Conjugate base
A.	HCO ₃ ⁻ (aq)	$H_2O(l)$	$H_2CO_3(aq)$	OH ⁻ (aq)
B.	H ₂ CO ₃ (aq)	OH⁻(aq)	HCO ₃ ⁻ (aq)	$H_2O(l)$
C.	H ₂ O(l)	HCO ₃ ⁻ (aq)	H ₂ CO ₃ (aq)	OH⁻(aq)
D.	$H_2O(l)$	HCO ₃ ⁻ (aq)	OH⁻(aq)	$H_2CO_3(aq)$

 $\text{HCO}_3^-(\text{aq}) + \text{H}_2\text{O}(\text{l}) \rightleftharpoons \text{OH}^-(\text{aq}) + \text{H}_2\text{CO}_3(\text{aq})$

22. Which group of three compounds contains only weak acids and bases?

A.	Ba(OH) ₂	CH ₃ NH ₂	CH ₃ COOH
B.	CH ₃ CH ₂ CH ₂ COOH	CH ₃ CH ₂ NH ₂	НСООН
C.	NH ₃	HNO ₃	CH ₃ CH ₂ COOH
D.	NH ₃	NaOH	H ₂ CO ₃

- **23.** What is the name of $\text{Co}_3(\text{PO}_4)_2$?
 - A. Cobalt(II) phosphite
 - B. Cobalt(II) phosphate
 - C. Cobalt(III) phosphite
 - D. Cobalt(III) phosphate

24. Consider the following reaction.

$$Sn(s) + 4HNO_3(aq) \rightarrow SnO_2(s) + 4NO_2(g) + 2H_2O(g)$$

Which statement is correct?

- A. HNO₃ is the oxidizing agent because it undergoes oxidation.
- B. HNO_3 is the reducing agent because the oxidation number of nitrogen changes from +5 to +4.
- C. Sn is the oxidizing agent because it undergoes reduction.
- D. Sn is the reducing agent because the oxidation number of tin changes from 0 to +4.

25. Which statements are correct for the electrolysis of molten lead(II) bromide, PbBr₂(l)?

- I. Pb^{2+} is reduced at the negative electrode (cathode).
- II. Br^{-} is oxidized at the positive electrode (anode).
- III. Bubbles of a brown gas are observed at the negative electrode (cathode).
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **26.** What is the name of $(CH_3)_3CCOCH_3$, applying IUPAC rules?
 - A. 2,2-dimethylbutan-3-one
 - B. 3,3-dimethylbutan-2-one
 - C. 2,2-dimethylbutanal
 - D. 3,3-dimethylbutanal

- 27. What is the function of the ultraviolet light used in the reaction between ethane and bromine?
 - A. It causes bromine free radicals to form bromine molecules.
 - B. It causes bromide ions to form bromine molecules.
 - C. It causes bromine molecules to form bromide ions.
 - D. It causes bromine molecules to form bromine free radicals.
- **28.** What is the condensed structural formula of the organic compound that forms when concentrated sulfuric acid is added to 2,3-dimethylbut-2-ene, $(CH_3)_2C=C(CH_3)_2$, followed by water?
 - A. $(CH_3)_2CHC(OSO_3H)(CH_3)_2$
 - B. $(CH_3)_2CHC(OH)(CH_3)_2$
 - C. $(CH_3)_2C(OH)C(OH)(CH_3)_2$
 - D. (CH₃)₂(CH₂)₂(CH₃)₂
- **29.** Which organic product forms in the following reaction?

$$(CH_3)_2 CHOH \xrightarrow{K_2 Cr_2 O_7/H^+}_{reflux} \rightarrow$$

- A. Ethanoic acid
- B. Propanal
- C. Propanone
- D. Propanoic acid

Mass of empty weighing bottle	1.0800 g
Mass of weighing bottle with piece of silver	11.5700 g
Volume of silver	$1.00{\rm cm}^3$

30. A student measured the mass and volume of a piece of silver and recorded the following values.

Which value, in g cm⁻³, for the density of silver should the student report in her laboratory notebook?

- A. 10.49
- B. 10.4900
- C. 10.5
- D. 10.500